Authors: Dražen Adamović, Victor G. Kac, Pierluigi Möseneder Frajria, Paolo Papi, Ozren Perše
Selecta Mathematica, pp 1–44
https://doi.org/10.1007/s00029-017-0386-7
Abstract: We complete the classification of conformal embeddings of a maximally reductive subalgebra a simple Lie algebra
at non-integrable non-critical levels k by dealing with the case when
has rank less than that of
. We describe some remarkable instances of decomposition of the vertex algebra
\mathfrak{k}
as a module for the vertex subalgebra generated by
. We discuss decompositions of conformal embeddings and constructions of new affine Howe dual pairs at negative levels. In particular, we study an example of conformal embeddings
at level
, and obtain explicit branching rules by applying certain q-series identity. In the analysis of conformal embedding
at level
we detect subsingular vectors which do not appear in the branching rules of the classical Howe dual pairs.
Keywords: Conformal embedding Vertex operator algebra Non-equal rank subalgebra Howe dual pairs q-series identity
Mathematics Subject Classification: Primary 17B69, Secondary 17B20 17B65